Protonation Equilibria of Ureas

By J. W. Barnett and Charmian J. O'Connor*

(Department of Chemistry, University of Auckland, Auckland, New Zealand)

Summary The basicity constants pK_{BH} of phenylurea and five substituted phenylureas have been measured and their protonation equilibria have been found to follow the H_A acidity function.

It is now widely accepted that the H_0 acidity function does not uniquely describe the protonation behaviour of indicators of different structures and especially those with different basic sites. Many new acidity scales have been formulated, one of which, H_A , has been found to explain the protonation equilibria of amides,¹ pyridine 1-oxides,² -0.03 for phenylurea from measurements in glacial acetic acid, but Perrin⁷ in his review on basicity constants classifies this value as unreliable. Moodie and Farlow⁸ have recently estimated values of pK_{BH} +, based on the H_0 scale, for urea and ethylurea as -0.15 and 0.00 respectively.

We now report values of $pK_{\rm BH}^+$ for six phenylureas, and find that their protonation equilibria follow the $H_{\rm A}$ acidity function. The Table gives the values of $pK_{\rm BH}^+$ for phenylurea, and for five substituted phenylureas, the slopes $[dlog_{10}I/d(-H_{\rm A})]$ and correlation coefficients (c.c.) of plots of $log_{10}I$ vs. $-H_{\rm A}$, the slopes $[dlog_{10}I/d(-H_0)]$ of plots of

Ionisation data for phenylureas (R·C₆H₄·NH·CO·NH₂) in sulphuric acid at 25.0 °C

R	—рКвн+	$d\log_{10}I/d(-H_{A})$	C.c.	$d\log_{10}I/d(-H_0)$	$\% \text{ w/w H}_2\text{SO}_4$ at [BH+] = [B]
н	1.30	0.95	0.998	0.69	26.2
4-F	1.18	1.04	0.994	0.89	24.0
4-Cl	1.48	0.95	0.997	0.68	29.8
4-Br	1.57	1.05	0.995	0.66	31.7
4-Me	1.22	0.98	0.996	0.85	24.8
3-Me	1.18	0.99	0.996	0.77	24.0

sulphoxides,³ carbamic acid esters,⁴ and $\alpha\beta$ -unsaturated aldehydes, ketones, and carboxylic acids.⁵

At present there are few quantitative data on the basicity constants of ureas. Hall⁶ predicted a value pK_{BH}^+ of

 $\log_{10}I \text{ vs.} -H_0$, and the percentage (w/w) of H_2SO_4 at half protonation. The ionisation ratio $I = [BH^+]/[B]$ was measured spectrophotometrically using a combination of the methods of Davis and Geissman⁹ and of Katritzky *et al.*¹⁰

It is a necessary, but not sufficient, criterion that for values of pK_{BH} + to be thermodynamic basicity constants, plots of $\log_{10}I$ vs. acidity function -H should have unit slope. Yates and Stevens¹¹ put limits of 0.95-1.05 on such slopes. Another necessary criterion is that the activity coefficient behaviour of the base under consideration should be the same as that of the bases used for the establishment of the acidity function scale. This latter criterion has rarely been substantiated in published studies on basicity

constants and therefore we include the percentage (w/w) of H_2SO_4 at half protonation in the Table.

Since the slopes of $\log_{10} I$ vs. $-H_{A}$ are close to unity, one can reasonably state that the protonation equilibria of phenylureas are governed by the amide acidity function $H_{\mathbf{A}}$ and not by H_0 , and it follows that any interpretation of kinetic data of ureas should be based on the H_{A} function.

(Received, 5th April 1972; Com. 551.)

- ¹ K. Yates, J. B. Stevens, and A. R. Katritzky, Canad. J. Chem., 1964, 42, 1957.
- ² C. D. Johnson, A. R. Katritzky, and N. Shakir, J. Chem. Soc. (B), 1967, 1235. ³ D. Landini, G. Mondena, G. Scorranno, and F. Taddei, J. Amer. Chem. Soc., 1969, 91, 6703.

- ⁸ D. Landini, G. Mondena, G. Scorranno, and F. Taddei, J. Amer. Chem. Soc., 1969, 91, 6703.
 ⁴ V. C. Armstrong and R. B. Moodie, J. Chem. Soc. (B), 1968, 275.
 ⁵ R. I. Zalewski and G. F. Dunn, Canad. J. Chem., 1969, 47, 2268.
 ⁶ N. F. Hall, J. Amer. Chem. Soc., 1930, 52, 5115.
 ⁷ D. D. Perrin, 'Dissociation Constants of Organic Bases in Aqueous Solution,' Butterworths, London, 1965, p. 450.
 ⁶ D. W. Farlow and R. B. Moodie, J. Chem. Soc. (B), 1970, 407.
 ⁶ C. T. Davis and T. A. Geissman, J. Amer. Chem. Soc., 1954, 76, 3507.
 ¹⁰ C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, N. Shakir, and A. M. White, Tetrahedron, 1965, 21, 1055.
 ¹¹ K. Yates and J. B. Stevens, Canad. J. Chem., 1965, 43, 529.